Calculations [S]

1. Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is used widely as a fertiliser and is made from the reaction between ammonium hydroxide and nitric acid solutions:
$\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a. Calculate the relative formula mass (RFM) of nitric acid: [1]
b. Calculate the amount in moles of 1.6 g of ammonium nitrate: [2]
c. Calculate the percentage by mass of nitrogen in ammonium nitrate: [2]
d. For each batch of 4 kg of ammonium hydroxide used:
i. Calculate the mass in kg of ammonium nitrate produced: [3]
ii. Calculate the mass of nitrogen contained within this ammonium nitrate: [2]
2. The formula of iron oxide can be calculated by heating iron in a crucible and measuring the mass of oxygen that combines with a fixed mass of iron. In this experiment, 3.92 g of iron increased in mass to 5.60 g when combined with oxygen.
a. Define the term empirical formula: [2]
b. Calculate the mass of oxygen that has reacted: [1]
c. Determine the empirical formula of iron oxide: [3]
d. In a separate experiment, the empirical formula of a hydrocarbon was found to be $\mathrm{C}_{3} \mathrm{H}_{7}$ and its RFM was 86. Determine its molecular formula: [2]
3. The reaction between sodium metal and water produces sodium hydroxide solution and hydrogen gas according to the following equation:
```
2Na(s) + 2H2O(I) -> 2NaOH(aq) + H2(g)
```

a. The relative atomic mass of sodium is 23.0. Define the term relative atomic mass: [2]
b. Calculate the mass of sodium needed to produce $75 \mathrm{~cm}^{3}$ of hydrogen gas: [3]
c. The sodium hydroxide produced is dissolved in the solution, whose volume is $250 \mathrm{~cm}^{3}$.
i. Calculate the mass of sodium hydroxide produced if 1.38 g of sodium is used: [3]
ii. Calculate the concentration of the sodium hydroxide solution that forms: [2]
d. Calculate how many hydrogen ions are present in $1 \mathrm{~cm}^{3}$ of $0.4 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}(\mathrm{aq})$: [2]
4. Crystals of aluminium sulphate contain trapped molecules of water that can be removed by strong heating according to the following equation:
$\mathrm{Al}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{SO}_{4}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\mathrm{I})$
a. Ideally, after 0.510 g of crystals is heated strongly 0.375 g of powder remains.
i. Calculate the amount in moles of water lost: [2]
ii. Calculate the amount in moles of powder remaining: [1]
iii. Deduce the value of x, the water of crystallisation of aluminium sulphate: [2]
b. In fact, when 0.510 g of crystals is heated strongly only 0.110 g of water is lost. Some of the water remains trapped in the crystals.
i. Calculate the mass of powder that would remain if this much water is lost: [3]
ii. Calculate the percentage yield of powder: [2]

Calculations [S]

1. Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is used widely as a fertiliser and is made from the reaction between ammonium hydroxide and nitric acid solutions:
$\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a. Calculate the relative formula mass (RFM) of nitric acid: [1]
$R F M=1+14+3(16)=63[1]$
b. Calculate the amount in moles of 1.6 g of ammonium nitrate: [2]
$R F M=14+4(1)+14+3(48)=80[1]$
moles $=$ mass $/$ RFM $=1.6 / 80=0.02 \mathrm{~mol}[1]$
c. Calculate the percentage by mass of nitrogen in ammonium nitrate: [2]
mass of $N=2(14)=28$ [1, or implied by correct next bit]
$\%$ mass $=28 / 80=35 \%[1]$
d. For each batch of 4 kg of ammonium hydroxide used:
i. Calculate the mass in kg of ammonium nitrate produced: [3]
```
moles NH4}\mp@subsup{\textrm{NH}}{4}{}=4000/35=114.2857mol [1] [
moles NH4}\mp@subsup{N}{4O}{3}=114.2857mol (1:1 ratio) [1] [
```

mass $\mathrm{NH}_{4} \mathrm{NO}_{3}=114.2857 * 80=9142.857 \mathrm{~g}=9.14 \mathrm{~kg}[1]$
ii. Calculate the mass of nitrogen contained within this ammonium nitrate: [2]

```
mass N = 35/100 * 9142.857g [1]
    = 3200g or 3.2kg [1]
```

2. The formula of iron oxide can be calculated by heating iron in a crucible and measuring the mass of oxygen that combines with a fixed mass of iron. In this experiment, 3.92 g of iron increased in mass to 5.60 g when combined with oxygen.
a. Define the term empirical formula: [2]

The simplest... [1]
... whole-number ratio of atoms/ions in a compound [1]
b. Calculate the mass of oxygen that has reacted: [1]
mass $05.60-3.92=1.68 \mathrm{~g}[1]$
c. Determine the empirical formula of iron oxide: [3]

Fe	0
3.92 g	1.68 g
$3.92 / 56=0.07 \mathrm{~mol}$	$1.68 / 16=0.105 \mathrm{~mol}$
Ratio is $2: 3$ so formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$	

[1] for each mole calculation
[1] for the final formula
d. In a separate experiment, the empirical formula of a hydrocarbon was found to be $\mathrm{C}_{3} \mathrm{H}_{7}$ and its RFM was 86. Determine its molecular formula: [2]

Number of units = RFM(proper)/RFM(empirical) = 2 [1]

Molecular formula $=2 * \mathrm{C}_{3} \mathrm{H}_{7}=\mathrm{C}_{6} \mathrm{H}_{14}$ [1]
3. The reaction between sodium metal and water produces sodium hydroxide solution and hydrogen gas according to the following equation:
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
a. The relative atomic mass of sodium is 23.0. Define the term relative atomic mass: [2] The average of the masses of its isotopes... [1] ... weighted by abundance. [1]
b. Calculate the mass of sodium needed to produce $75 \mathrm{~cm}^{3}$ of hydrogen gas: [3]

```
moles H2=75/24,000=0.003125mol [1]
moles Na=2* 0.003125=0.00625mol (2:1 ratio) [1]
mass Na=0.00625 * 23 = 0.14375g (0.144g to 3sf) [1]
```

c. The sodium hydroxide produced is dissolved in the solution, whose volume is $250 \mathrm{~cm}^{3}$.
i. Calculate the mass of sodium hydroxide produced if 1.38 g of sodium is used: [3]

```
moles }\textrm{Na}=1.38/23=0.06\textrm{mol [1]
moles NaOH = 0.06mol (1:1 ratio) [1]
mass NaOH = 0.06* 40 = 2.4g [1]
```

ii. Calculate the concentration of the sodium hydroxide solution that forms: [2]

$$
\begin{aligned}
\text { concentration }=\text { moles/volume } & =0.06 /(250 / 1000)[1] \\
& =0.24 \mathrm{~mol} / \mathrm{dm}^{3}[1]
\end{aligned}
$$

d. Calculate how many hydrogen ions are present in $1 \mathrm{~cm}^{3}$ of $0.4 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}(\mathrm{aq})$: [2]

```
moles }\mp@subsup{\textrm{H}}{}{+}=\mathrm{ concentration * volume = 0.4 * (1/1000) = 0.0004mol [1]
```

number $=0.0004 * 6 \times 10^{23}=2.4 \times 10^{20}[1]$
4. Crystals of aluminium sulphate contain trapped molecules of water that can be removed by strong heating according to the following equation:

$$
\mathrm{Al}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{SO}_{4}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\mathrm{I})
$$

a. Ideally, after 0.510 g of crystals is heated strongly 0.375 g of powder remains.
i. Calculate the amount in moles of water lost: [2]

$$
\left.\begin{array}{l}
\text { mass } \mathrm{H}_{2} \mathrm{O}=0.510-0.375=0.135 \mathrm{~g} \\
\text { moles } \mathrm{H}_{2} \mathrm{O}=0.135 / 18=0.0075 \mathrm{~mol}
\end{array}\right]
$$

ii. Calculate the amount in moles of powder remaining: [1]
moles $\mathrm{Al}_{2} \mathrm{SO}_{4}=0.375 / 150=0.0025 \mathrm{~mol}[1]$
iii. Deduce the value of x, the water of crystallisation of aluminium sulphate: [2] $x / 1=0.0075 / 0.0025$ (or equivalent ratio/fraction comparison) [1] $x=3$ [1]
b. In fact, when 0.510 g of crystals is heated strongly only 0.110 g of water is lost. Some of the water remains trapped in the crystals.
i. Calculate the mass of powder that would remain if this much water is lost: [3]

```
moles }\mp@subsup{\textrm{H}}{2}{}\textrm{O}=0.110/18=0.006111\textrm{mol}[1
moles Al }\mp@subsup{\textrm{SO}}{4}{}=1/3*0.006111\textrm{mol}=0.002037\textrm{mol}(1:3 ratio) [1] 
mass }\mp@subsup{\textrm{Al}}{2}{}\mp@subsup{\textrm{SO}}{4}{}=0.002037*150=0.3056g[1]
```

ii. Calculate the percentage yield of powder: [2]

$$
\% \text { yield }=(\text { actual/theoretical) } * 100=(0.3056 / 0.375) * 100 \text { [1] }
$$

